Small Multifactorial Primes
Type | n | n_max digits | n_max prime digits | np1 *1 | List1 *2 | List2 *3 |
Factorial primes | ||||||
n!+1 | 0 - 3248 | 9998 | 4042 | 18 | mf1p | mfp_n!1+1 |
n!-1 | 3 - 3248 | 9998 | 5614 | 18 | mf1m | mfp_n!1-1 |
Multifactorial primes | ||||||
n!2+1 | 0 - 5982 | 10000 | 593 | 4 | mf2p | mfp_n!2+1 |
n!2-1 | 3 - 5982 | 10000 | 5137 | 17 | mf2m | mfp_n!2-1 |
n!3+1 | 0 - 8572 | 10000 | 5413 | 32 | mf3p | mfp_n!3+1 |
n!3-1 | 3 - 8572 | 10000 | 6070 | 18 | mf3m | mfp_n!3-1 |
n!4+1 | 0 - 11077 | 10000 | 5575 | 23 | mf4p | mfp_n!4+1 |
n!4-1 | 3 - 11077 | 10000 | 6035 | 25 | mf4m | mfp_n!4-1 |
n!5+1 | 0 - 13522 | 10000 | 8681 | 57 | mf5p | mfp_n!5+1 |
n!5-1 | 3 - 13522 | 10000 | 9090 | 56 | mf5m | mfp_n!5-1 |
n!6+1 | 0 - 15921 | 10000 | 7837 | 43 | mf6p | mfp_n!6+1 |
n!6-1 | 3 - 15921 | 10000 | 4164 | 17 | mf6m | mfp_n!6-1 |
n!7+1 | 0 - 18283 | 10000 | 8248 | 85 | mf7p | mfp_n!7+1 |
n!7-1 | 3 - 18283 | 10000 | 7025 | 56 | mf7m | mfp_n!7-1 |
n!8+1 | 0 - 20614 | 10000 | 8805 | 44 | mf8p | mfp_n!8+1 |
n!8-1 | 3 - 20614 | 10000 | 8716 | 57 | mf8m | mfp_n!8-1 |
n!9+1 | 0 - 22919 | 10000 | 9346 | 100 | mf9p | mfp_n!9+1 |
n!9-1 | 3 - 22919 | 10000 | 8395 | 68 | mf9m | mfp_n!9-1 |
n!10+1 | 0 - 25201 | 10000 | 9918 | 46 | mf10p | mfp_n!10+1 |
n!10-1 | 3 - 25201 | 10000 | 9004 | 35 | mf10m | mfp_n!10-1 |
n!11+1 | 0 - 27463 | 10000 | 8880 | 116 | mf11p | mfp_n!11+1 |
n!11-1 | 3 - 27463 | 10000 | 9664 | 93 | mf11m | mfp_n!11-1 |
n!12+1 | 0 - 29706 | 10000 | 9642 | 50 | mf12p | mfp_n!12+1 |
n!12-1 | 3 - 29706 | 10000 | 7964 | 41 | mf12m | mfp_n!12-1 |
n!13+1 | 0 - 31933 | 10000 | 9984 | 121 | mf13p | mfp_n!13+1 |
n!13-1 | 3 - 31933 | 10000 | 9324 | 124 | mf13m | mfp_n!13-1 |
n!14+1 | 0 - 34147 | 10000 | 9683 | 68 | mf14p | mfp_n!14+1 |
n!14-1 | 3 - 34147 | 10000 | 7746 | 55 | mf14m | mfp_n!14-1 |
n!15+1 | 0 - 36346 | 10000 | 9222 | 112 | mf15p | mfp_n!15+1 |
n!15-1 | 3 - 36346 | 10000 | 8882 | 60 | mf15m | mfp_n!15-1 |
n!16+1 | 0 - 38530 | 10000 | 9813 | 76 | mf16p | mfp_n!16+1 |
n!16-1 | 3 - 38530 | 10000 | 9476 | 101 | mf16m | mfp_n!16-1 |
n!17+1 | 0 - 40705 | 10000 | 9047 | 174 | mf17p | mfp_n!17+1 |
n!17-1 | 3 - 40705 | 10000 | 8657 | 180 | mf17m | mfp_n!17-1 |
n!18+1 | 0 - 42868 | 10000 | 9521 | 71 | mf18p | mfp_n!18+1 |
n!18-1 | 3 - 42868 | 10000 | 9910 | 50 | mf18m | mfp_n!18-1 |
n!19+1 | 0 - 45022 | 10000 | 9642 | 186 | mf19p | mfp_n!19+1 |
n!19-1 | 3 - 45022 | 10000 | 9347 | 157 | mf19m | mfp_n!19-1 |
n!20+1 | 0 - 47165 | 10000 | 8756 | 87 | mf20p | mfp_n!20+1 |
n!20-1 | 3 - 47165 | 10000 | 8158 | 64 | mf20m | mfp_n!20-1 |
n!21+1 | 0 - 49300 | 10000 | 9851 | 183 | mf21p | mfp_n!21+1 |
n!21-1 | 3 - 49300 | 10000 | 9871 | 69 | mf21m | mfp_n!21-1 |
n!22+1 | 0 - 51426 | 10000 | 9393 | 92 | mf22p | mfp_n!22+1 |
n!22-1 | 3 - 51426 | 10000 | 9642 | 95 | mf22m | mfp_n!22-1 |
n!23+1 | 0 - 53545 | 10000 | 9855 | 243 | mf23p | mfp_n!23+1 |
n!23-1 | 3 - 53545 | 10000 | 9643 | 195 | mf23m | mfp_n!23-1 |
n!24+1 | 0 - 55657 | 10000 | 7207 | 110 | mf24p | mfp_n!24+1 |
n!24-1 | 3 - 55657 | 10000 | 9083 | 58 | mf24m | mfp_n!24-1 |
n!25+1 | 0 - 57757 | 10000 | 9743 | 227 | mf25p | mfp_n!25+1 |
n!25-1 | 3 - 57757 | 10000 | 9619 | 159 | mf25m | mfp_n!25-1 |
n!26+1 | 0 - 59854 | 10000 | 9375 | 115 | mf26p | mfp_n!26+1 |
n!26-1 | 3 - 59854 | 10000 | 9747 | 111 | mf26m | mfp_n!26-1 |
n!27+1 | 0 - 61943 | 10000 | 9677 | 223 | mf27p | mfp_n!27+1 |
n!27-1 | 3 - 61943 | 10000 | 9242 | 132 | mf27m | mfp_n!27-1 |
n!28+1 | 0 - 64027 | 10000 | 9636 | 134 | mf28p | mfp_n!28+1 |
n!28-1 | 3 - 64027 | 10000 | 9963 | 119 | mf28m | mfp_n!28-1 |
n!29+1 | 0 - 66103 | 10000 | 9644 | 276 | mf29p | mfp_n!29+1 |
n!29-1 | 3 - 66103 | 10000 | 9779 | 242 | mf29m | mfp_n!29-1 |
n!30+1 | 0 - 68174 | 10000 | 7755 | 99 | mf30p | mfp_n!30+1 |
n!30-1 | 3 - 68174 | 10000 | 7917 | 64 | mf30m | mfp_n!30-1 |
n!31+1 | 0 - 70242 | 10000 | 9615 | 317 | mf31p | mfp_n!31+1 |
n!31-1 | 3 - 70242 | 10000 | 9902 | 305 | mf31m | mfp_n!31-1 |
n!32+1 | 0 - 72299 | 10000 | 9667 | 147 | mf32p | mfp_n!32+1 |
n!32-1 | 3 - 72299 | 10000 | 8994 | 165 | mf32m | mfp_n!32-1 |
n!33+1 | 0 - 74354 | 10000 | 9153 | 250 | mf33p | mfp_n!33+1 |
n!33-1 | 3 - 74354 | 10000 | 9541 | 133 | mf33m | mfp_n!33-1 |
n!34+1 | 0 - 76404 | 10000 | 9690 | 146 | mf34p | mfp_n!34+1 |
n!34-1 | 3 - 76404 | 10000 | 9837 | 146 | mf34m | mfp_n!34-1 |
n!35+1 | 0 - 78449 | 10000 | 9813 | 282 | mf35p | mfp_n!35+1 |
n!35-1 | 3 - 78449 | 10000 | 9434 | 161 | mf35m | mfp_n!35-1 |
n!36+1 | 0 - 80492 | 10000 | 9778 | 139 | mf36p | mfp_n!36+1 |
n!36-1 | 3 - 80492 | 10000 | 9485 | 103 | mf36m | mfp_n!36-1 |
n!37+1 | 0 - 82525 | 10000 | 9815 | 321 | mf37p | mfp_n!37+1 |
n!37-1 | 3 - 82525 | 10000 | 9736 | 305 | mf37m | mfp_n!37-1 |
n!38+1 | 0 - 84556 | 10000 | 9707 | 167 | mf38p | mfp_n!38+1 |
n!38-1 | 3 - 84556 | 10000 | 9929 | 172 | mf38m | mfp_n!38-1 |
n!39+1 | 0 - 86584 | 10000 | 9950 | 281 | mf39p | mfp_n!39+1 |
n!39-1 | 3 - 86584 | 10000 | 9677 | 152 | mf39m | mfp_n!39-1 |
n!40+1 | 0 - 88606 | 10000 | 8797 | 153 | mf40p | mfp_n!40+1 |
n!40-1 | 3 - 88606 | 10000 | 9948 | 113 | mf40m | mfp_n!40-1 |
n!41+1 | 0 - 90624 | 10000 | 9909 | 362 | mf41p | mfp_n!41+1 |
n!41-1 | 3 - 90624 | 10000 | 9686 | 352 | mf41m | mfp_n!41-1 |
n!42+1 | 0 - 92641 | 10000 | 9638 | 140 | mf42p | mfp_n!42+1 |
n!42-1 | 3 - 92641 | 10000 | 8894 | 84 | mf42m | mfp_n!42-1 |
n!43+1 | 0 - 94650 | 10000 | 9982 | 371 | mf43p | mfp_n!43+1 |
n!43-1 | 3 - 94650 | 10000 | 9934 | 387 | mf43m | mfp_n!43-1 |
n!44+1 | 0 - 96660 | 10000 | 9949 | 190 | mf44p | mfp_n!44+1 |
n!44-1 | 3 - 96660 | 10000 | 9487 | 166 | mf44m | mfp_n!44-1 |
n!45+1 | 0 - 98661 | 10000 | 9996 | 318 | mf45p | mfp_n!45+1 |
n!45-1 | 3 - 98661 | 10000 | 8539 | 142 | mf45m | mfp_n!45-1 |
n!46+1 | 0 - 100660 | 10000 | 7690 | 209 | mf46p | mfp_n!46+1 |
n!46-1 | 3 - 100660 | 10000 | 9976 | 203 | mf46m | mfp_n!46-1 |
n!47+1 | 0 - 102657 | 10000 | 9843 | 425 | mf47p | mfp_n!47+1 |
n!47-1 | 3 - 102657 | 10000 | 9741 | 439 | mf47m | mfp_n!47-1 |
n!48+1 | 0 - 104650 | 10000 | 9969 | 207 | mf48p | mfp_n!48+1 |
n!48-1 | 3 - 104650 | 10000 | 9681 | 133 | mf48m | mfp_n!48-1 |
n!49+1 | 0 - 106640 | 10000 | 9723 | 397 | mf49p | mfp_n!49+1 |
n!49-1 | 3 - 106640 | 10000 | 9627 | 328 | mf49m | mfp_n!49-1 |
n!50+1 | 0 - 108628 | 10000 | 9981 | 186 | mf50p | mfp_n!50+1 |
n!50-1 | 3 - 108628 | 10000 | 9797 | 144 | mf50m | mfp_n!50-1 |
n!51+1 | 0 - 110616 | 10000 | 9585 | 344 | mf51p | mfp_n!51+1 |
n!51-1 | 3 - 110616 | 10000 | 9982 | 218 | mf51m | mfp_n!51-1 |
n!52+1 | 0 - 112590 | 10000 | 9194 | 196 | mf52p | mfp_n!52+1 |
n!52-1 | 3 - 112590 | 10000 | 9918 | 206 | mf52m | mfp_n!52-1 |
n!53+1 | 0 - 114572 | 10000 | 9989 | 471 | mf53p | mfp_n!53+1 |
n!53-1 | 3 - 114572 | 10000 | 9464 | 460 | mf53m | mfp_n!53-1 |
n!54+1 | 0 - 116542 | 10000 | 9612 | 212 | mf54p | mfp_n!54+1 |
n!54-1 | 3 - 116542 | 10000 | 9831 | 112 | mf54m | mfp_n!54-1 |
n!55+1 | 0 - 118521 | 10000 | 9944 | 389 | mf55p | mfp_n!55+1 |
n!55-1 | 3 - 118521 | 10000 | 9786 | 262 | mf55m | mfp_n!55-1 |
n!56+1 | 0 - 120484 | 10000 | 9725 | 214 | mf56p | mfp_n!56+1 |
n!56-1 | 3 - 120484 | 10000 | 9699 | 157 | mf56m | mfp_n!56-1 |
n!57+1 | 0 - 122449 | 10000 | 9930 | 412 | mf57p | mfp_n!57+1 |
n!57-1 | 3 - 122449 | 10000 | 9962 | 228 | mf57m | mfp_n!57-1 |
n!58+1 | 0 - 124415 | 10000 | 9512 | 220 | mf58p | mfp_n!58+1 |
n!58-1 | 3 - 124415 | 10000 | 9776 | 214 | mf58m | mfp_n!58-1 |
n!59+1 | 0 - 126379 | 10000 | 9912 | 483 | mf59p | mfp_n!59+1 |
n!59-1 | 3 - 126379 | 10000 | 9973 | 508 | mf59m | mfp_n!59-1 |
n!60+1 | 0 - 128341 | 10000 | 9888 | 189 | mf60p | mfp_n!60+1 |
n!60-1 | 3 - 128341 | 10000 | 9500 | 85 | mf60m | mfp_n!60-1 |
n!61+1 | 0 - 130297 | 10000 | 9883 | 518 | mf61p | mfp_n!61+1 |
n!61-1 | 3 - 130297 | 10000 | 9966 | 521 | mf61m | mfp_n!61-1 |
n!62+1 | 0 - 132247 | 10000 | 9771 | 270 | mf62p | mfp_n!62+1 |
n!62-1 | 3 - 132247 | 10000 | 9921 | 262 | mf62m | mfp_n!62-1 |
n!63+1 | 0 - 134194 | 10000 | 9972 | 433 | mf63p | mfp_n!63+1 |
n!63-1 | 3 - 134194 | 10000 | 9869 | 209 | mf63m | mfp_n!63-1 |
n!64+1 | 0 - 136140 | 10000 | 9483 | 287 | mf64p | mfp_n!64+1 |
n!64-1 | 3 - 136140 | 10000 | 9731 | 284 | mf64m | mfp_n!64-1 |
n!65+1 | 0 - 138087 | 10000 | 9524 | 389 | mf65p | mfp_n!65+1 |
n!65-1 | 3 - 138087 | 10000 | 9835 | 267 | mf65m | mfp_n!65-1 |
n!66+1 | 0 - 140035 | 10000 | 9672 | 238 | mf66p | mfp_n!66+1 |
n!66-1 | 3 - 140035 | 10000 | 9953 | 145 | mf66m | mfp_n!66-1 |
n!67+1 | 0 - 141976 | 10000 | 9927 | 613 | mf67p | mfp_n!67+1 |
n!67-1 | 3 - 141976 | 10000 | 9875 | 559 | mf67m | mfp_n!67-1 |
n!68+1 | 0 - 143910 | 10000 | 9738 | 269 | mf68p | mfp_n!68+1 |
n!68-1 | 3 - 143910 | 10000 | 9795 | 281 | mf68m | mfp_n!68-1 |
n!69+1 | 0 - 145855 | 10000 | 9935 | 461 | mf69p | mfp_n!69+1 |
n!69-1 | 3 - 145855 | 10000 | 9923 | 263 | mf69m | mfp_n!69-1 |
n!70+1 | 0 - 147782 | 10000 | 9879 | 228 | mf70p | mfp_n!70+1 |
n!70-1 | 3 - 147782 | 10000 | 9316 | 136 | mf70m | mfp_n!70-1 |
n!71+1 | 0 - 149721 | 10000 | 9905 | 580 | mf71p | mfp_n!71+1 |
n!71-1 | 3 - 149721 | 10000 | 10000 | 584 | mf71m | mfp_n!71-1 |
n!72+1 | 0 - 151645 | 10000 | 9832 | 276 | mf72p | mfp_n!72+1 |
n!72-1 | 3 - 151645 | 10000 | 9801 | 172 | mf72m | mfp_n!72-1 |
n!73+1 | 0 - 153583 | 10000 | 9995 | 590 | mf73p | mfp_n!73+1 |
n!73-1 | 3 - 153583 | 10000 | 9881 | 641 | mf73m | mfp_n!73-1 |
n!74+1 | 0 - 155501 | 10000 | 9966 | 318 | mf74p | mfp_n!74+1 |
n!74-1 | 3 - 155501 | 10000 | 9883 | 313 | mf74m | mfp_n!74-1 |
n!75+1 | 0 - 157429 | 10000 | 9978 | 444 | mf75p | mfp_n!75+1 |
n!75-1 | 3 - 157429 | 10000 | 9893 | 225 | mf75m | mfp_n!75-1 |
n!76+1 | 0 - 159355 | 10000 | 9758 | 304 | mf76p | mfp_n!76+1 |
n!76-1 | 3 - 159355 | 10000 | 9944 | 266 | mf76m | mfp_n!76-1 |
n!77+1 | 0 - 161269 | 10000 | 9923 | 570 | mf77p | mfp_n!77+1 |
n!77-1 | 3 - 161269 | 10000 | 9902 | 353 | mf77m | mfp_n!77-1 |
n!78+1 | 0 - 163187 | 10000 | 9650 | 236 | mf78p | mfp_n!78+1 |
n!78-1 | 3 - 163187 | 10000 | 9885 | 142 | mf78m | mfp_n!78-1 |
n!79+1 | 0 - 165112 | 10000 | 9858 | 624 | mf79p | mfp_n!79+1 |
n!79-1 | 3 - 165112 | 10000 | 9979 | 663 | mf79m | mfp_n!79-1 |
n!80+1 | 0 - 167028 | 10000 | 9838 | 271 | mf80p | mfp_n!80+1 |
n!80-1 | 3 - 167028 | 10000 | 9787 | 222 | mf80m | mfp_n!80-1 |
n!81+1 | 0 - 168937 | 10000 | 9873 | 624 | mf81p | mfp_n!81+1 |
n!81-1 | 3 - 168937 | 10000 | 8838 | 377 | mf81m | mfp_n!81-1 |
n!82+1 | 0 - 170845 | 10000 | 9808 | 333 | mf82p | mfp_n!82+1 |
n!82-1 | 3 - 170845 | 10000 | 9730 | 319 | mf82m | mfp_n!82-1 |
n!83+1 | 0 - 172754 | 10000 | 9877 | 683 | mf83p | mfp_n!83+1 |
n!83-1 | 3 - 172754 | 10000 | 9907 | 702 | mf83m | mfp_n!83-1 |
n!84+1 | 0 - 174661 | 10000 | 9952 | 303 | mf84p | mfp_n!84+1 |
n!84-1 | 3 - 174661 | 10000 | 9881 | 139 | mf84m | mfp_n!84-1 |
n!85+1 | 0 - 176567 | 10000 | 9908 | 496 | mf85p | mfp_n!85+1 |
n!85-1 | 3 - 176567 | 10000 | 9967 | 454 | mf85m | mfp_n!85-1 |
n!86+1 | 0 - 178471 | 10000 | 9830 | 342 | mf86p | mfp_n!86+1 |
n!86-1 | 3 - 178471 | 10000 | 9963 | 360 | mf86m | mfp_n!86-1 |
n!87+1 | 0 - 180374 | 10000 | 9791 | 615 | mf87p | mfp_n!87+1 |
n!87-1 | 3 - 180374 | 10000 | 9976 | 363 | mf87m | mfp_n!87-1 |
n!88+1 | 0 - 182275 | 10000 | 9943 | 352 | mf88p | mfp_n!88+1 |
n!88-1 | 3 - 182275 | 10000 | 9932 | 310 | mf88m | mfp_n!88-1 |
n!89+1 | 0 - 184176 | 10000 | 9950 | 715 | mf89p | mfp_n!89+1 |
n!89-1 | 3 - 184176 | 10000 | 9970 | 652 | mf89m | mfp_n!89-1 |
n!90+1 | 0 - 186075 | 10000 | 9243 | 269 | mf90p | mfp_n!90+1 |
n!90-1 | 3 - 186075 | 10000 | 9837 | 153 | mf90m | mfp_n!90-1 |
n!91+1 | 0 - 187975 | 10000 | 9998 | 641 | mf91p | mfp_n!91+1 |
n!91-1 | 3 - 187975 | 10000 | 9725 | 391 | mf91m | mfp_n!91-1 |
n!92+1 | 0 - 189875 | 10000 | 9910 | 366 | mf92p | mfp_n!92+1 |
n!92-1 | 3 - 189875 | 10000 | 9831 | 388 | mf92m | mfp_n!92-1 |
n!93+1 | 0 - 191768 | 10000 | 9987 | 622 | mf93p | mfp_n!93+1 |
n!93-1 | 3 - 191768 | 10000 | 9980 | 335 | mf93m | mfp_n!93-1 |
n!94+1 | 0 - 193650 | 10000 | 9776 | 423 | mf94p | mfp_n!94+1 |
n!94-1 | 3 - 193650 | 10000 | 9940 | 357 | mf94m | mfp_n!94-1 |
n!95+1 | 0 - 195538 | 10000 | 9689 | 608 | mf95p | mfp_n!95+1 |
n!95-1 | 3 - 195538 | 10000 | 9675 | 467 | mf95m | mfp_n!95-1 |
n!96+1 | 0 - 197431 | 10000 | 9993 | 346 | mf96p | mfp_n!96+1 |
n!96-1 | 3 - 197431 | 10000 | 9957 | 197 | mf96m | mfp_n!96-1 |
n!97+1 | 0 - 199328 | 10000 | 9951 | 768 | mf97p | mfp_n!97+1 |
n!97-1 | 3 - 199328 | 10000 | 9883 | 764 | mf97m | mfp_n!97-1 |
n!98+1 | 0 - 201202 | 10000 | 9322 | 387 | mf98p | mfp_n!98+1 |
n!98-1 | 3 - 201202 | 10000 | 9956 | 289 | mf98m | mfp_n!98-1 |
n!99+1 | 0 - 203084 | 10000 | 9958 | 682 | mf99p | mfp_n!99+1 |
n!99-1 | 3 - 203084 | 10000 | 9965 | 322 | mf99m | mfp_n!99-1 |
n!100+1 | 0 - 204976 | 10000 | 9786 | 298 | mf100p | mfp_n!100+1 |
n!100-1 | 3 - 204976 | 10000 | 9661 | 251 | mf100m | mfp_n!100-1 |
n!101+1 | 0 - 206853 | 10000 | 9882 | 824 | mf101p | mfp_n!101+1 |
n!101-1 | 3 - 206853 | 10000 | 9986 | 830 | mf101m | mfp_n!101-1 |